A comprehensive approach to assessing and managing health risks from cyanotoxins, applicable under a wide range of conditions

Ingrid Chorus Until 2019 Federal Environmental Agency, Germany / WHO Collaborating Centre for research on drinking-water hygiene

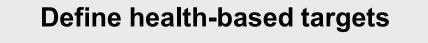
White death dap

acutely lethal dose:
 ≥ 50 g biomass

Cyanobacteria

acutely lethal dose:
 ≥ 50 g biomass

Cyanobacteria


Preventing exposure through

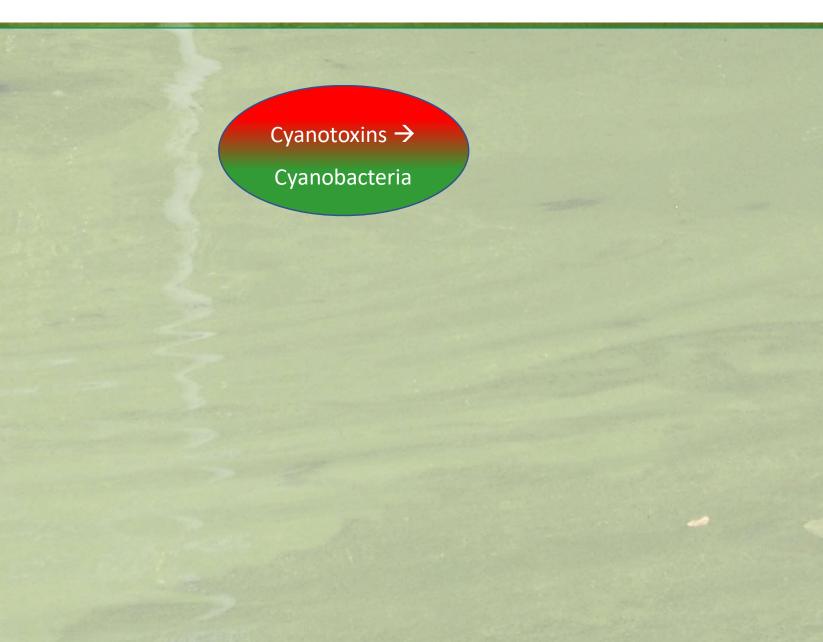
Drinking-water, Recreation/Workplaces, Food, Dietary supplements, Dialysis

6

Treatment Sites for **Beaches and DW-offtake**

Assessing on on on on the state of the second Setting managment targets Waterbody conditions; phosphorus concentrations

System assessment: can the supply chain, <u>from catchment to consumer</u>, meet the health-based targets at all times ?


Monitoring the measures critical for controlling the system

Management and communication plans for normal operations and incidents

GOV

GOV

Independent surveillance to verify the functioning of the system Water Safety Plans

Cyanobacteria

Defining targets

WHO Guideline values and backround documents on the web since 24 November **for YOUR review** by 12th January:

https://www.who.int/water_sanitation_health/water-quality/guidelines/chemicals/chemicalsinformation/en/

	Drinking-w lifetime	Drinking-w short-term	Drinking-w acute	Health- based* reference	Recreation
MC-LR (applicable to sum MC)	1 µg/L	?			?
CYNs	0.7 µg/L	3 µg/L			6 µg/L
ATXs				30 µg/L	60 µg/L
STXs			3 µg/L		30 µg/L
			(5 kg baby)		(15 kg kid)

Cyanotoxins → Cyanobacteria "Translating" cyanotoxin targets to targets for cyanobacteria:

not OK

OK

parameterBiovolumeChlorophyll aCell counts*worst-case
estimates:MC/BV $\leq 3/1$ MC/Chl.a $\leq 1:1$ cell quota[µg/mm³][µg/µg]or ≤ 0.2 µg/10⁶ cells

Visual assessment: scums and turbidity:

OK: Secchi Disc reading: > 1-2 m

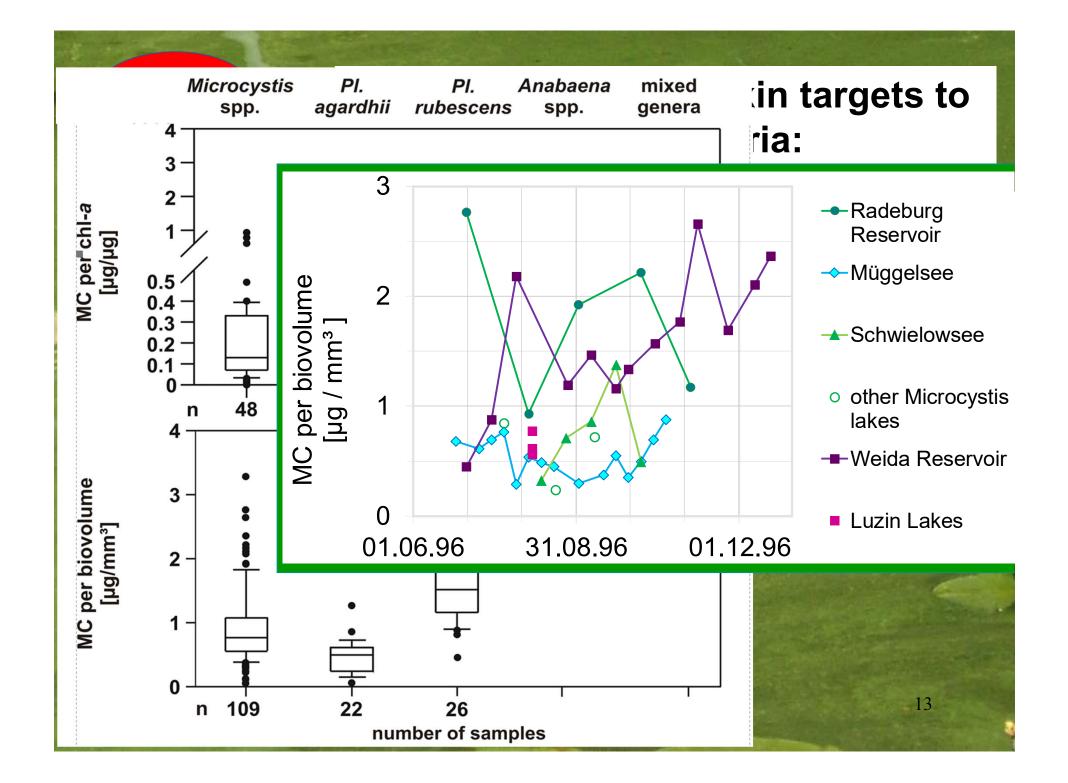
Cyanotoxins → Cyanobacteria

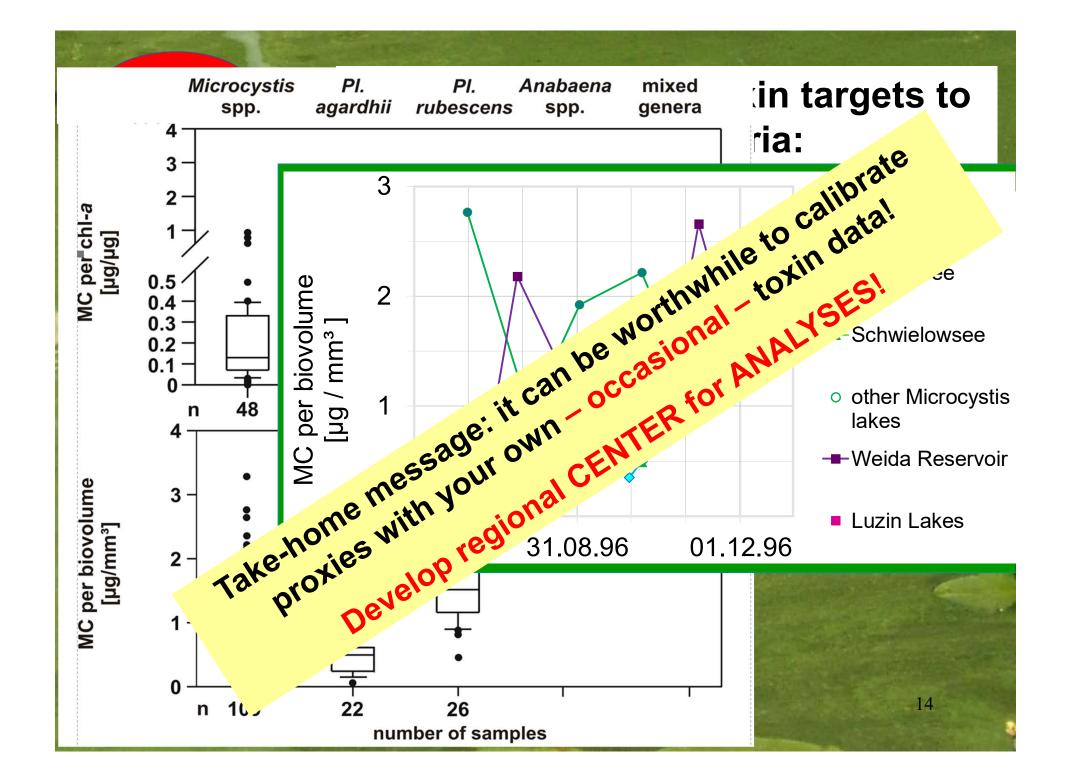
"Translating" cyanotoxin targets to targets for cyanobacteria:

parameter	Biovolume	Chlorophyll a	Cell counts*
worst-case estimates:	MC/BV ≤ 3/1 [µg/mm³]	MC/ChI.a ≤ 1:1 [µg/µg]	cell quota ≤ 200 fg MC/cell or ≤ 0.2 µg/10 ⁶ cells

<u>Visual assessment</u>: scums and Secchi Disc reading > 1-2 m:

Reasons:


- 1. <u>Biomass includes unspecific effects of cyanobacterial blooms (e.g</u> <u>from unknown metabolites; associated pathogens)</u>
- 2. <u>Easier (cheaper) access to microscopy and/or pigment analyses</u> (including on-site probes or remote sensing)
- 3. <u>Turbidity and scum-scouting allow low-cost estimate of probability</u>


Cyanotoxins → Cyanobacteria "Translating" cyanotoxin targets to targets for cyanobacteria:

parameter	Biovolume	Chlorophyll a	Cell counts*
			cell quota
worst-case estimates:	$MC/BV \le 3/1$	MC/Chl.a ≤ 1:1	≤ 200 fg MC/cell
	[µg/mm³]	[hð\hð]	or ≤ 0.2 µg/10 ⁶ cells

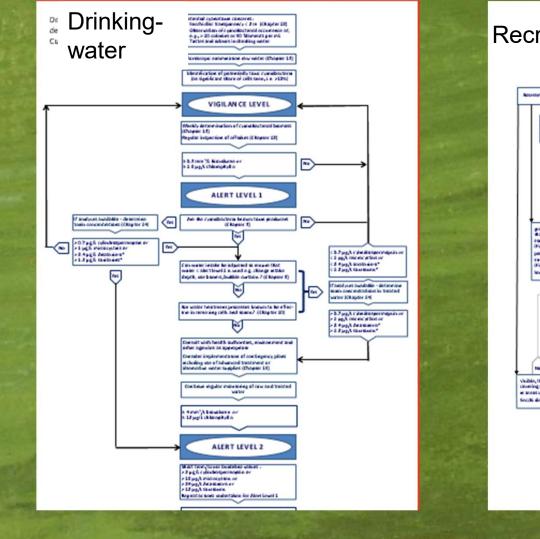
<u>Visual assessment</u>: scums and Secchi Disc reading > 1-2 m:

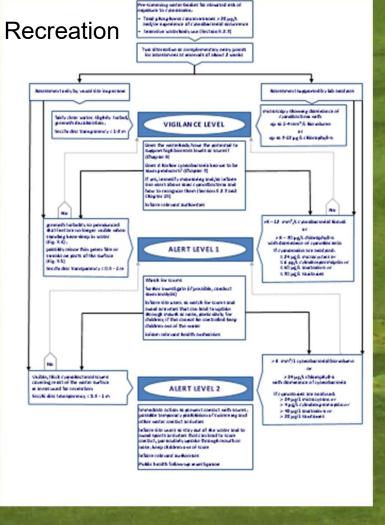
Are these ratios appropriate for Uruguay / Argentina?

Cyanobacteria

Preventing exposure through

Drinking-water, Recreation/Workplaces, Food, Dietary supplements, Dialysis


Treatment Sites for **Beaches and DW-offtake**


Assessing on on on on the state of the second Setting managment targets Waterbody conditions; phosphorus concentrations

Short-term responses to blooms: Alert Levels Frameworks for drinking-water and for recreational waterbody use

Preventing exposure through

Drinking-water, Recreation/Workplaces, Food, Dietary supplements, Dialysis

Potential cyanotoxin concerns:

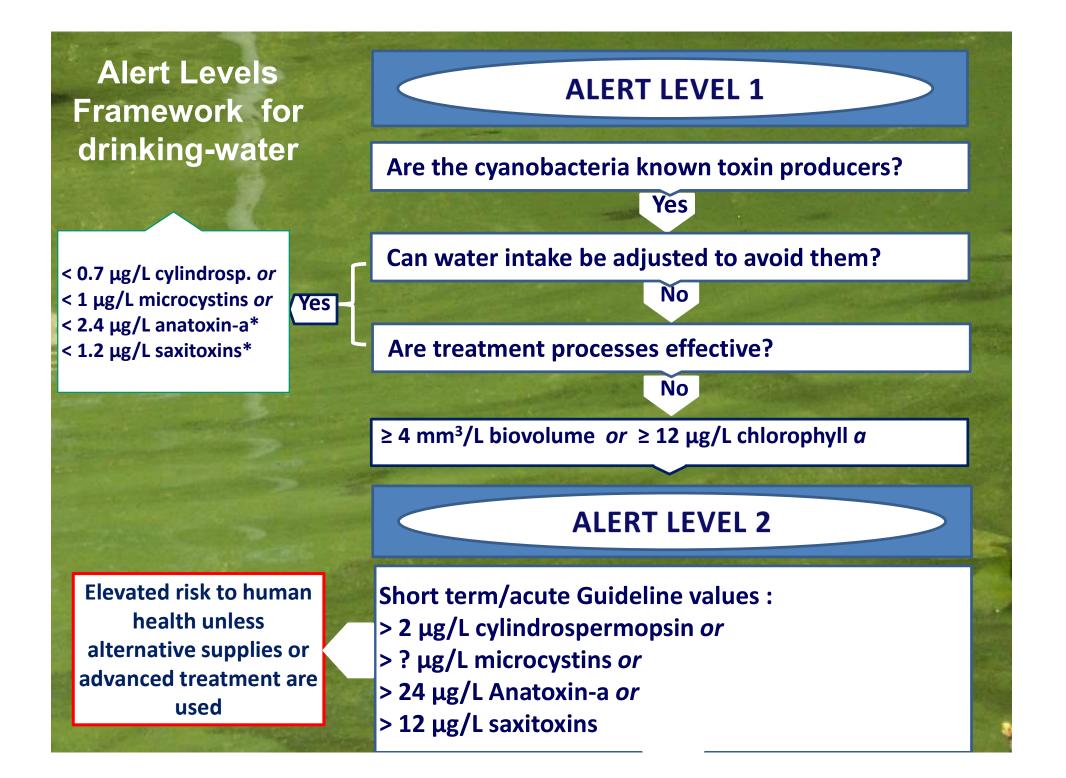
- Secchi disc transparency < 2 m (Chapter 12)
- Observation of cyanobacterial occurrence at, e.g., > 10 colonies or 50 filaments per mL
- Tastes and odours in drinking water

Microscopic examination raw water (Chapter 13)

Identification of potentially toxic cyanobacteria (as significant share of cells seen, i.e. >10%)

VIGILANCE LEVEL

Weekly determination of cyanobacterial biomass Regular inspection of offtakes


 \geq 0.3 mm³/L biovolume *or* \geq 1.0 µg/L chlorophyll *a*

ALERT LEVEL 1

Short-term responses:

Alert Levels Framework for drinking-water

No

Two alternative or complementary entry points for assessment at intervals of about 2 weeks

Pre-screening water-bodies for elevated risk of exposure to cyanotoxins:

 Total phosphorus concentrations > 20 μg/L and/or experience of cyanobacterial occurrence

Intensive waterbody use

Short-term responses:

Alert Levels Framework for recreation

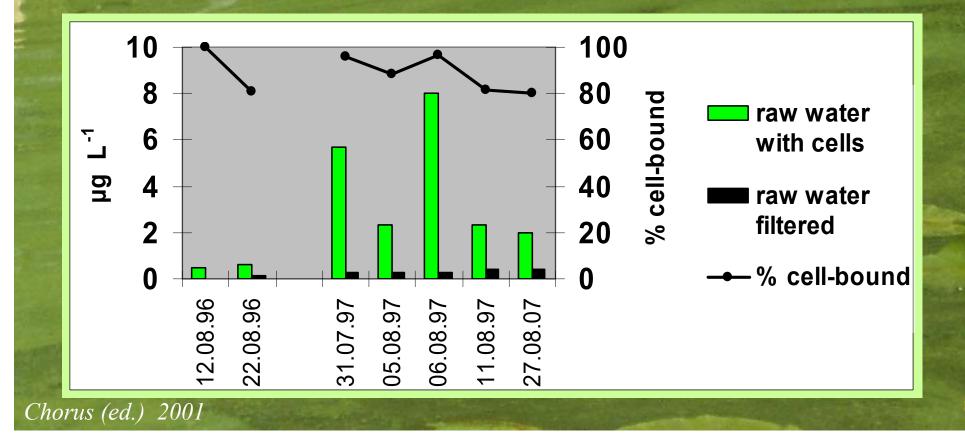
Assessment only by visual site Assessment supported by lab inspection analyses dominance of cyanobacteria fairly clear water, slightly turbid, VIGILANCE \leq 1-4 mm³/L biovolume greenish discoloration; LEVEL or Secchi disc transparency < 1-2 m \leq 3-12 µg/L chlorophyll-a If potential to support high biomass $(TP > 20 \mu g/L \text{ or known toxin producers},$ intensify monitoring and/or inform site users and relevant authorities If turbid or scums... >8 – 12 mm³/L cyanobacterial biovol. or $> 8 - 30 \mu g/L$ chlorophyll-a or toxin > ...

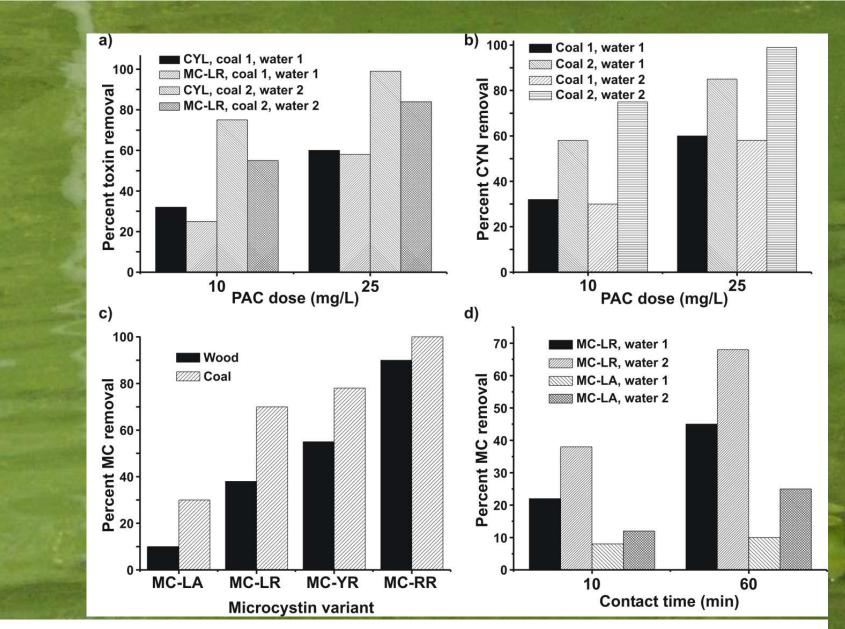
Cyanobacteria

Preventing exposure through

Drinking-water, Recreation/Workplaces, Food, Dietary supplements, Dialysis

ment Sites for **Beaches and DW-offtake**


Treat-


Assessing on on on on the state of the second Setting managment targets Waterbody conditions; phosphorus concentrations

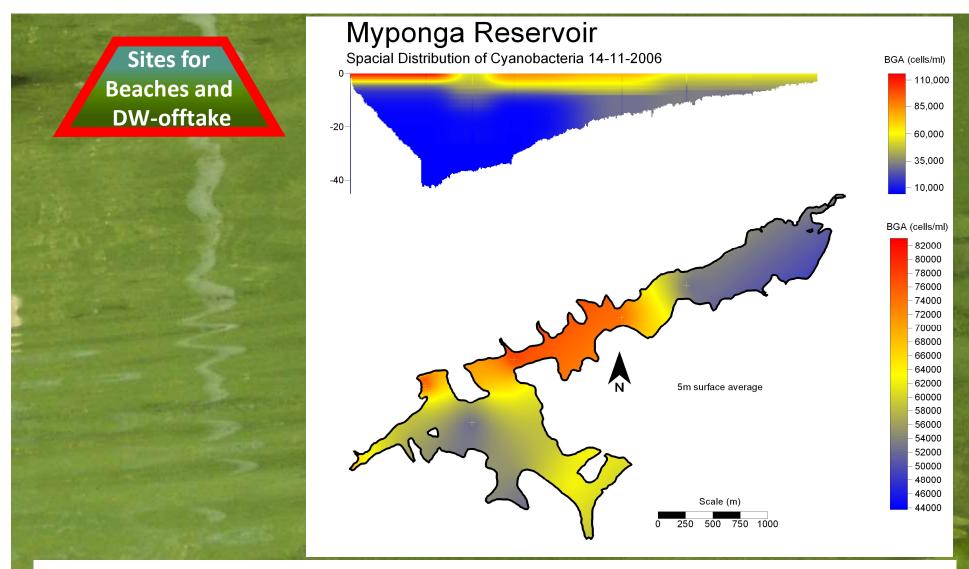
Example treatment: Rostock treatment plant – microcystin in raw and filtered water

Treatment

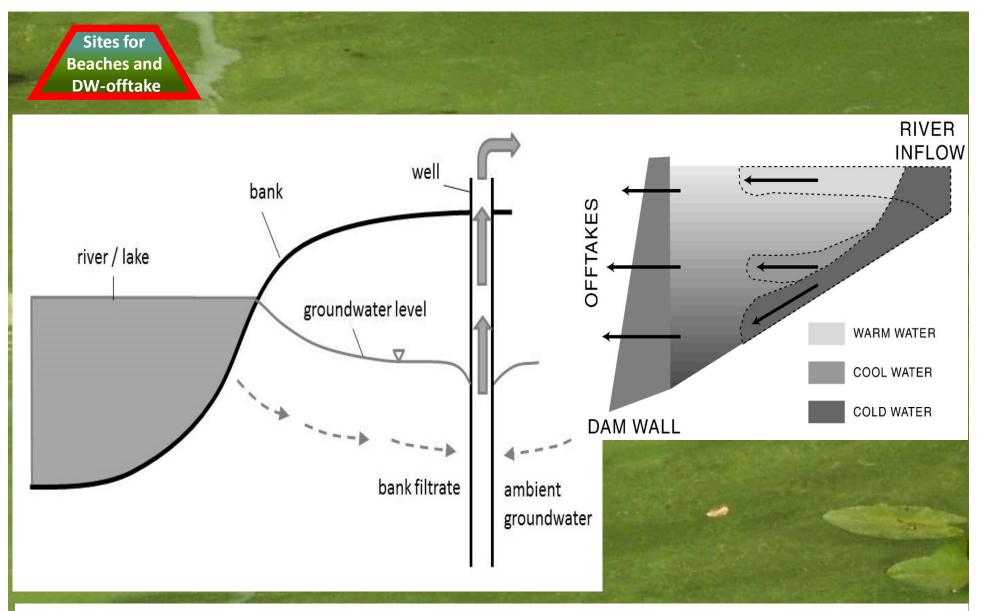
Microcystis or *Planktothrix agardhii* in raw water (biovol. 19 mm³/L in one case, otherwise < 2 mm³/L; locculation and rapid filtration

Newcombe, Ho & Neto in: Toxic Cyanobactera in Water, 2nd edition (in prep.) Figure 10.1: Cyanotoxin removal effectiveness through types of PAC

Cyanobacteria


Preventing exposure through

Drinking-water, Recreation/Workplaces, Food, Dietary supplements, Dialysis


ment Sites for **Beaches and DW-offtake**

Treat-

Assessing on on on on the state of the second Setting managment targets Waterbody conditions; phosphorus concentrations

Burch et al. in Toxic Cyanobactera in Water, 2nd edition (in prep.) Figure 9.1: Vertical profiles and horizontal variability of *Dolichospermum circinalis* in a reservoir in South Australia (phycocyanin fluorescence, converted to cells per mL)

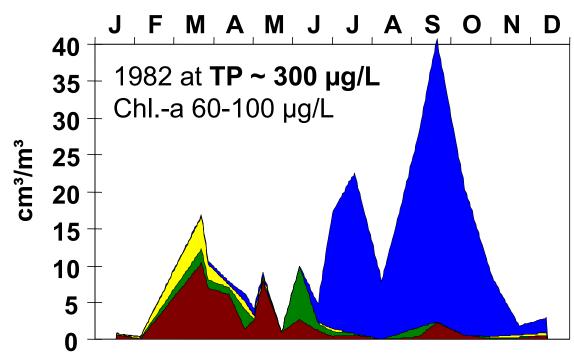
From Burch et al, TCiW, 2nd edition:

- For reservoirs: variable offtake depths can avoid blooms effectively
- For rivers: riverbank filtration as highly effective treatment method

Cyanobacteria

Preventing exposure through

Drinking-water, Recreation/Workplaces, Food, Dietary supplements, Dialysis


Treatment Sites for **Beaches and** DW offtake

Assessing on on on on the state of the second Setting managment targets Waterbody conditions; phosphorus concentrations

Example nutrient loading: Restoration Schlachtensee

27

Waterbody conditions; phosphorus concentrations

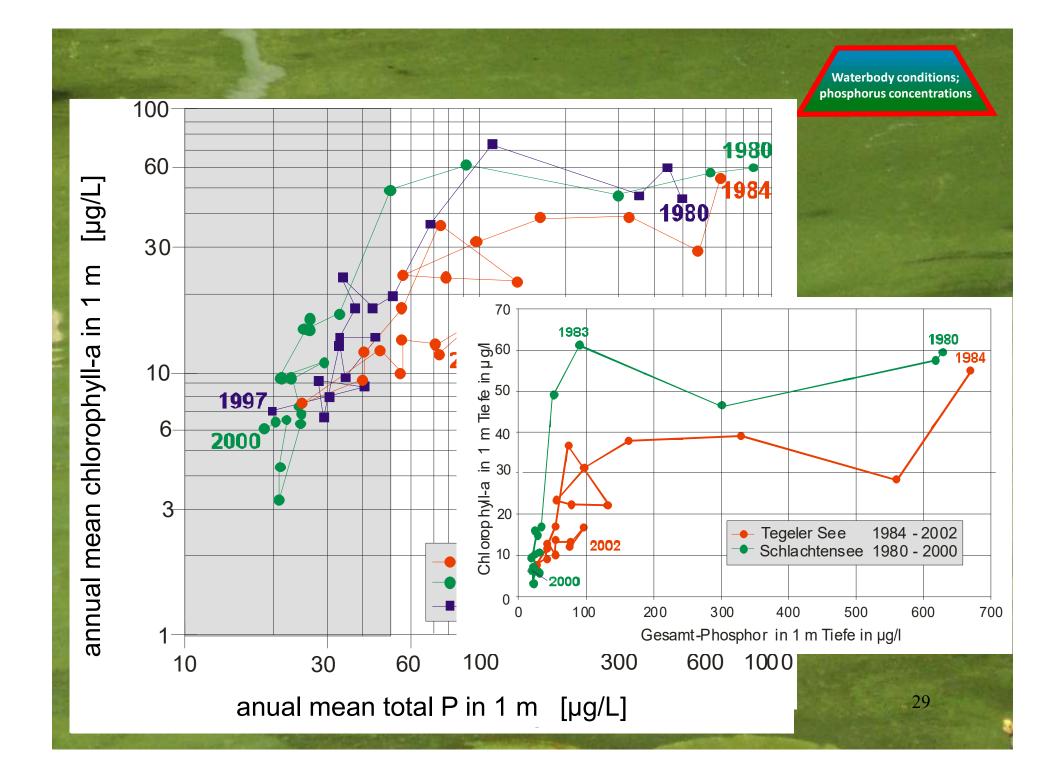
Before restoration

Waterbody conditions; **Example nutrient loading: Restoration** phosphorus concentrations **Schlachtensee** MAMJ JA S ΟΝ D F 40 1982 at **TP ~ 300 µg/L** 35 Chl.-a 60-100 µg/L 30 25 20 J F Μ Α Μ Ν S Α 0 15 20 10 cm³/m³ 15 1989 10 5 5 0 0 After restoration (for details, see Μ Μ S N F Α Ο Α https://www.umweltbundesamt.de/publikationen/ 20 oligotrophication-of-lake-tegel-schlachtensee)

cm³/m³

15

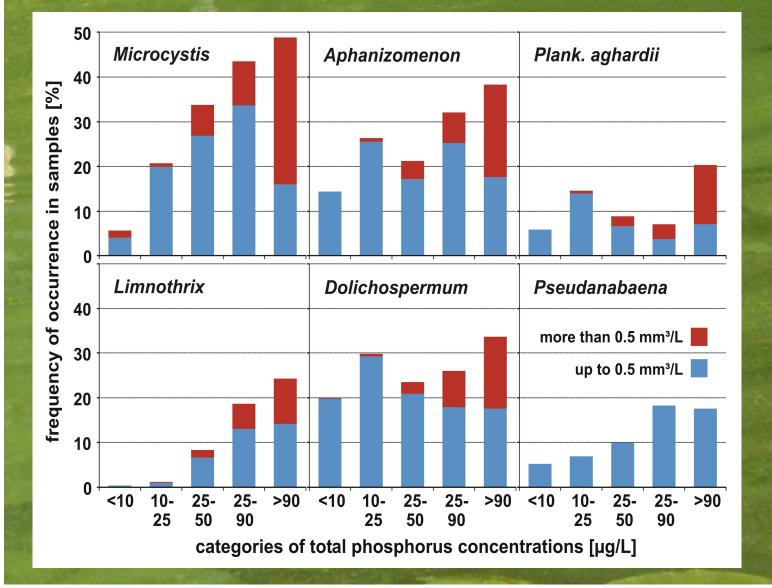
10


5

0

1998

1989, 1998 at TP ~ 20 μg/L Chl.a 10-20 µg/L and


cm³/m³

Waterbody conditions; phosphorus concentrations	Total phosphorus	Mixing conditions		Transpar- ency	рН
	>50 µg/L	Stagnant, >5-10 m, stable thermal gradients: Favours scum-forming taxa, i.e. <i>Microcystis,</i> <i>Dolichospermum,</i> <i>Aphanizomenon</i>	Stagnant, shallow and well mixed: Favours non- scum forming, i.e. <i>P. agardhii</i> ; fine filamentous e.g. <i>Limnothrix</i>	Low; Secchi-depth often <1 m	pH >7 (often >8 or possibly >9 due to photosyn- thesis)
	>20 - <u><</u> 50 µg/L	Stagnant, >10 m, stratified: potential for mass development of <i>Planktothrix rubescens</i> accumulating at the metalimnion		Moderate; Secchi-depth ~1- 3 m	pH ≥7
	>10 - <u><</u> 20 µg/L	Fast flowing river Mountain stream or brook	Lake or reservoir with residence <1 month	High; Secchi-depth ~3- 7 m	рН 6-7
	<u><</u> 10 µg/L		cteria on surfaces	Very High - Clear water; Secchidepth often >7 m	pH<6
	exception: mats of cyanobacteria on surfaces				

Waterbody conditions; phosphorus concentrations Frequency of occurrence in 1928 samples from 210 water-bodies Number of samples per category from lowest to

highest TP-concentrations: 501, 623, 302, 246, 256

31

Why focus on total phosphorus (TP)?

carrying capacities for phytoplankton biomass LD LD LD LD LD Light winter spring summer fall winter

Waterbody conditions; phosphorus concentrations

- Law of limiting factor: limiting one does the job
- P is usually easier to control than N (cheaper in sewage treatment)
- Denitrification gets rid of excessive N (particularly in warm climates)

But:

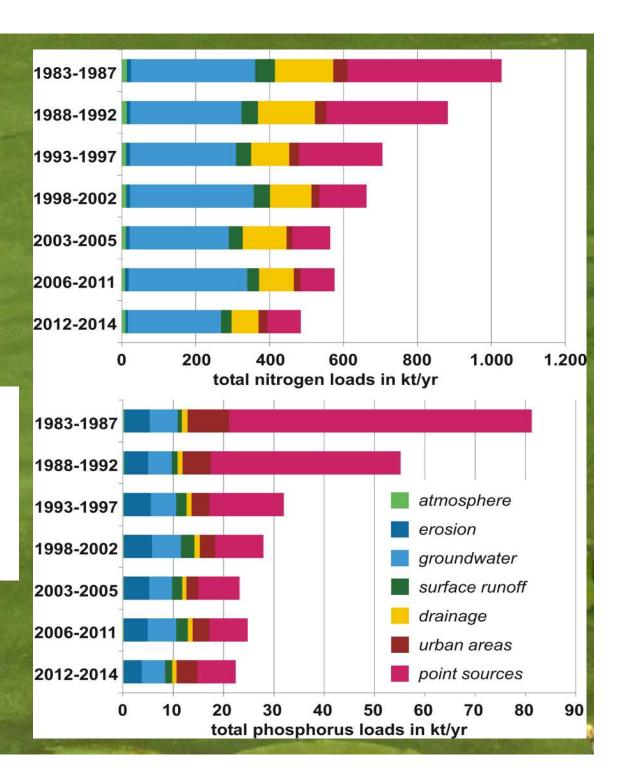
- Where N is already limiting, enhancing that may be effective
- Excessive N damages macrophytes
- Estuaries ??

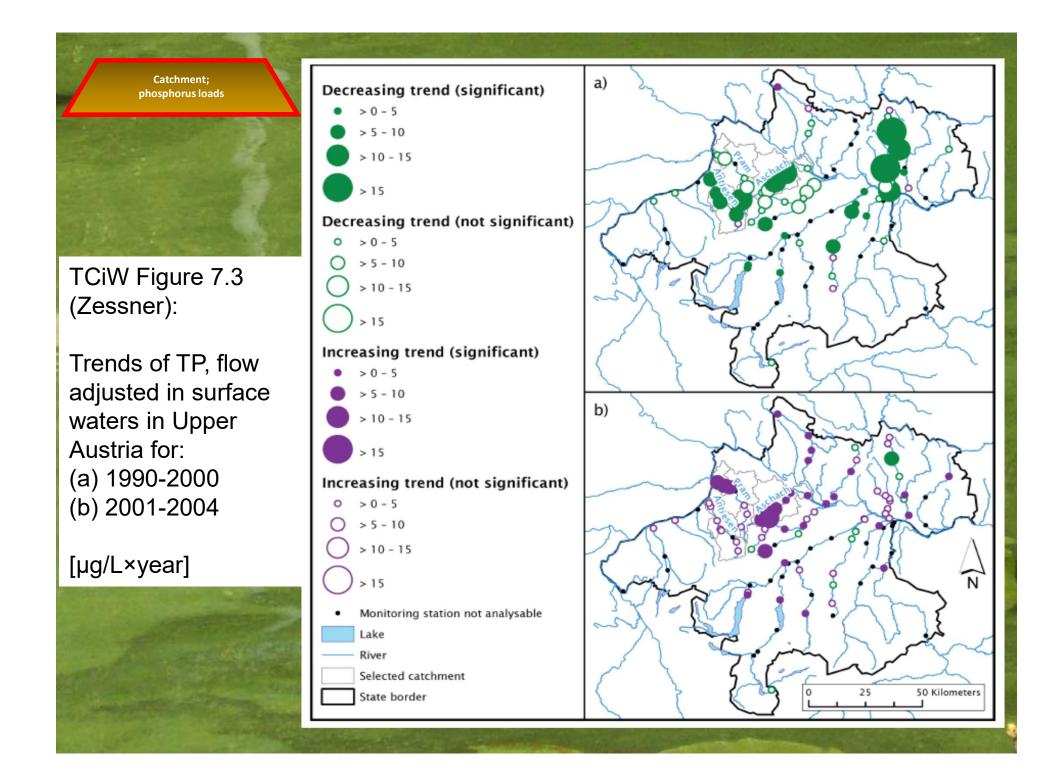
Cyanobacteria

Preventing exposure through

Drinking-water, Recreation/Workplaces, Food, Dietary supplements, Dialysis

Treatment Sites for **Beaches and DW-offtake**

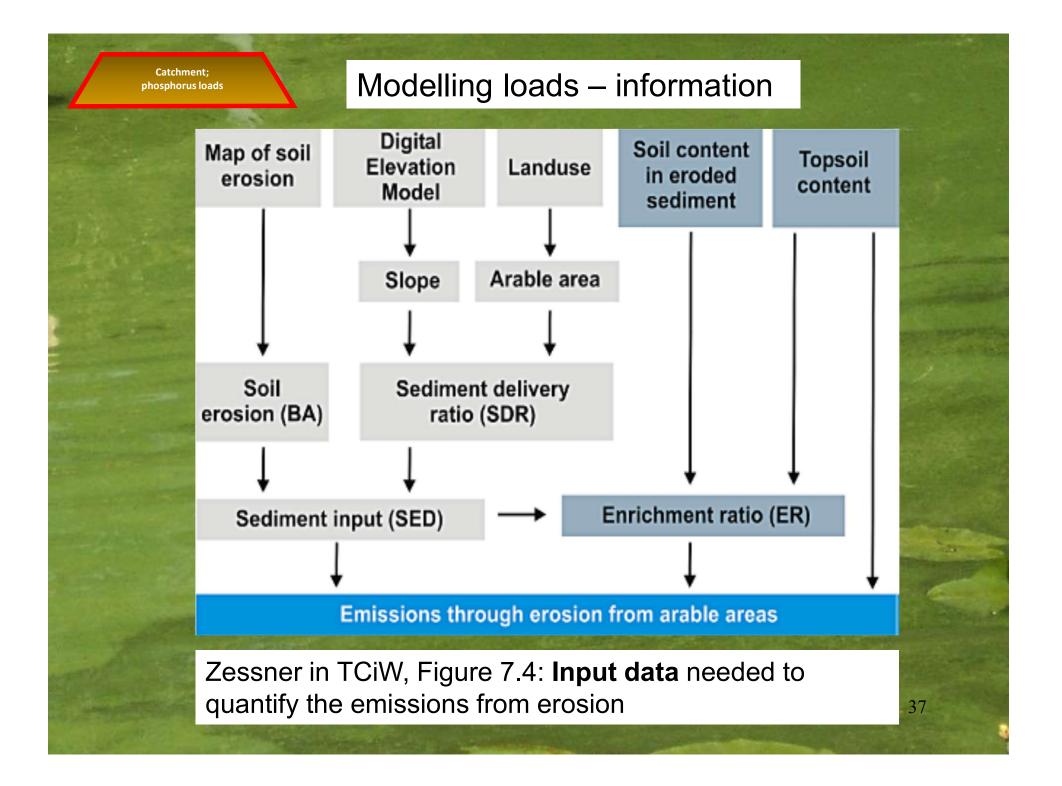

Assessing on on on on the state of the second Setting managment targets Waterbody conditions; phosphorus concentrations


Catchment; phosphorus loads

Loads of N and P to surface water-bodies in Germany

kilotons per year (kt/yr)

UBA (2017)



Catchment; phosphorus loads

Setback distances / buffer strips around waterbodies - Itaipu

Policy instruments to control diffuse loads from agriculture without farmers loosing income:

- Fertilising according to soil content (measured at the end of the growing season)
- Small-scale differentiation of areas fertilised by monitoring crop growth via drone or plane
- Balancing nutrients that enter the farm against those leaving it with the crop (records inspected by authority)
- Buying vulnerable areas in the catchment
- Subsidising farmers for extensifying their operations using limited amounts of agrochemicals
- Setback distances / buffer strips around waterbodies, possibly subsidised

System assessment: can the supply chain, <u>from catchment to consumer</u>, meet the health-based targets at all times ?

Monitoring the measures critical for controlling the system

Management and communication plans for normal operations and incidents

GOV

GOV

Independent surveillance to verify the functioning of the system Water Safety Plans

39

39

Water Safety Plans

- <u>Steps</u>:
 •Assess the risks, including the efficacy of existing control measures
 - •From that, determine priority actions
 - Define Control measures
 - Validate that they are effective
 - Document the system and the assessment
 - Revise the WSP periodically

For each Control Measure:

- 1. Determine operational limit not to be exceeded
- 2. Determine monitoring system for that limit
- 3. Determine corrective action

Preliminary steps for developing a WSP

- 1. Support of leading management often underestimated !
- 2. Form a Water Safety Plan team excellent platform for intersectoral collaboration !
- **3. Describe water supply (flow chart)** typically surprises pop up about aspects overlooked, not documented ...

Take home messages:

- The catchment system is not hopeless you ONLY have < 100 µg/L TP! And there <u>are</u> effective catchment management approaches to reduce P loading:
 - Riparian buffer strips
 - Fertilising according to demand (soil P content/crop growth)
 - Regulations requiring farm gate budgets

→ estimate TP loads from the catchment!

- 2. Toxin cell quotas are useful to understand "your bloom" and do analyse toxins! Please publish! (Are regional analytical centers to provide that service an option?)
- 3. Consider using the WHO **Water Safety Planning** approach! (Umweltbundesamt provides training)

Comments, information on toxin/biomass ratios to: ingrid.chorus@gmail.com

Developing a Water Safety Plan: the following slides show steps we did not have time to discuss.

For further guidance (in english) see also <u>https://toxische-cyanobakterien.de/en/</u>

Direct indication		Ν	0	F	U	assessment	uncertainty
Humans / animals	Illness indicating cyanotoxins						
Cyanotoxins > 1 µg/L	Observed in water-body						
Cyanobacterial proliferation	Visible blooms, green turbidity						
Cyanobacterial biomass > 1 mm³/L or 1 µg/l Chl <i>a</i>	Microscopy, Chla analyses Pigment fluorescence						

N = no indication, O = occasional, F = frequent, U= uncertain information basis

Water-body conditions			Ρ	Y	U	Assessment ?	Uncertainty ?
General condition of water- body	e.g. eutrophic, deep with stable thermal stratification or shallow, mixed? retention time > 1 month ?						
Current condition s in water- body	e.g. elevated temperature; stratified? TP-conc. > 10-30 µg/L; low transparency ?						
?	?						46

N = no indication, P= probable, Y = yes, U= uncertain information basis

<u>Nutrient loading</u>	С	Ρ	Ν	U	Assessment	Uncertainty
Assessment by catchment inspection						
Assessment through measuring and/or modelling nutrient loads						

C = control quite certain, P= probable, N = control not given, U= uncertain information basis

Bank Filtration Slow Sand Filtration	Y	Ρ	Ν	U	Assessment	Uncertainty
Oxidising conditions						
Travel time > 4 weeks						
Fine-grained substrate						
Temperature > 10 °C						
Low accumulation of lysing cells on sediment						
?						
Y = Yes, P = Par	tially	y, N :	= No	, U =	= lack of inform	ation

<u>Reservoir offtake</u> <u>strategy</u>	Y	Ρ	Ν	U	Assessment	Uncertainty
Is offtake depth / site variable ?						
Is offtake continuously monitored for cells (e.g. fluorescence; particle counting; turbidity; daily sampling and microscopy)?						
Can adaption of offtake sites effectively avoid cell intake						
?						
Y = Yes, P = Par	tially	y, N :	= No,	U = I	ack of informa	tion ⁴⁹

<u>Drinking-water</u> <u>Treatment</u>	Y	Ρ	Ν	U	Assessment	Uncertainty			
No pre-oxidation Step									
Flocculation and Filtration									
Flocculation and Flotation									
Post-oxidation									
Powdered activated carbon									
GAC (granular activated carbon filtration)									
?									
Y = Yes, P = Partially, N = No, U = lack of information ⁵⁰									

hazardous event	hazard	risk; basis for assess- ment	uncertainty of assessment	control measures	residual risk; basis for assess- ment	uncertainty of assessment	measures
<i>Microcystis</i> bloom	MCYST in DW at several µg/L	<u>high;</u> conc. in previous blooms	low ; good understanding of WB from 10 years data				
							51

hazardous event	hazard	risk; basis for assess- ment	uncertainty of assessment	control measures	residual risk; basis for assess- ment	uncertainty of assessment	measures
<i>Microcystis</i> bloom	MCYST in DW at several µg/L	<u>high;</u> conc. in previous blooms	low ; good understanding of WB from 10 years data	1. DW treatment (ozone + GAC);	medium; experience with MCYST, removal but no 2. barrier!	low ; MCYST, was always effectively removed; literature confirms this	1. mainten- ance ozone and GAC;
		15 A	Rain			1	
							52

hazardous event	hazard	risk; basis for assess- ment	uncertainty of assessment	control measures	residual risk; basis for assess- ment	uncertainty of assessment	measures
<i>Microcystis</i> bloom	MCYST in DW at several µg/L	high; conc. in previous blooms	low ; good understanding of WB from 10 years data	2. farm ma- nagement	medium; fertilisation management plans are just beginning to work	low ; good loading model; confidence in prediction of load development	2. Strengthen <u>collabora-</u> <u>tion with</u> <u>farmers</u>
			R				
							53

hazardous event	hazard	risk; basis for assess- ment	uncertainty of assessment	control measures	residual risk; basis for assess- ment	uncertainty of assessment	measures
<i>Microcystis</i> bloom	MCYST in DW at several µg/L	<u>high;</u> conc. in previous blooms	low ; good understanding of WB from 10 years data	1. DW treatment (ozone + GAC); 2. farm ma- nagement	medium; experience with MCYST, removal; 2. barrier just beginning	low; MCYST, was always effectively removed; good load models	 mainten- ance ozone and GAC; <u>catch-</u> <u>ment</u>
Planktothrix agardhii proliferation	Cyano- toxins; MCYST	<u>high;</u> Secchi < 0.5 m; greenish	high; no phytopl. or cyanotoxin data	Poor DW treat- ment insuf.; intensive farming	<u>high</u>	high; no phytopl. or cyanotoxin data	 Phyto- plankton analyses Introduce bank filtrat.
							54

hazardous event	hazard	risk; basis for assess- ment	uncertainty of assessment	control measures	residual risk; basis for assess- ment	uncertainty of assessment	measures
<i>Microcystis</i> bloom	MCYST in DW at several µg/L	<u>high;</u> conc. in previous blooms	low ; good understanding of WB from 10 years data	1. DW treatment (ozone + GAC); 2. farm ma- nagement	medium; experience with MCYST, removal; 2. barrier just beginning	low; MCYST, was always effectively removed; good load models	 mainten- ance ozone and GAC; <u>catch-</u> <u>ment</u>
Planktothrix agardhii proliferation	Cyano- toxins; MCYST	<u>high;</u> Secchi < 0.5 m; greenish	high ; no phytopl. or cyanotoxin data	Poor DW treat- ment insuf.; intensive farming	<u>high</u>	high; no phytopl. or cyanotoxin data	 Phyto- plankton analyses Introduce bank filtrat.
Planktothrix rubescens at offtake	high MCYST intake	<u>high</u> ; lit. = contain a lot	medium; cell data but no tox data	Variable offtake	medium; winter mix; Only PAC	medium; no own data	1. tox data 2. catchm.